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Abstract 

Sound event detection (SED) is a challenging task where ambient sound events are detected from a given audio sig-
nal, which includes categorizing the events and estimating their onset and offset times. Deep learning methods such 
as convolutional neural networks (CNN) and recurrent neural networks (RNN) have achieved promising performance 
in SED. However, for overlapping sound events, existing deep learning methods are still limited in detecting individual 
sound events from their mixtures. Inspired by the success of the dynamic routing mechanism of the capsule net-
work (CapsNet), this paper proposes a capsule network model (ResCapsnet-BiGRU) based on a customized residual 
attention module (CRAM) and bidirectional gated recurrent unit (BiGRU). CRAM is utilized to extract features from log-
mel spectrograms that are relevant to sound events. Through dynamic routing, the capsule network can address 
the overlapping sound events problem. In addition, the BiGRU with time-distributed fully connected layers is adopted 
to obtain contextual information. Our proposed method was evaluated on two datasets: the Vehicle Weakly Labeled 
Sound Dataset (VWLSD , DCASE 2017 Task 4) and the Domestic Environment Sound Dataset (DESD , DCASE 2022 Task 
4). It achieved F-scores of 62.1% and 75.9% on the Audio Tagging (AT) task, and 54.1% and 59.0% on the sound event 
detection (SED) task, respectively. The source codes are available at https://​github.​com/​123su​nbing/​ResCa​psnet.​git.
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1  Introduction
Sound event detection (SED) is an important research 
direction in the field of audio processing, and its main 
tasks include localization and classification of sound 
events. Localization refers to determining the start time 
and end time of a sound event in the audio stream, i.e., 
the boundary of the sound event; classification refers 
to identifying the category of the sound event, such as 
human voice, car sound, dog barking, and so on. SEDs are 
widely used in various fields such as machine perception, 

automatic monitoring, multimedia information retrieval, 
and anomaly detection [1–3]. Among them, polyphonic 
sound event detection (PSED) [4] aims to detect sound 
events from multiple categories, and sound events may 
occur simultaneously as in Fig.  1. However, existing 
PSED methods suffer from high error rates. The root 
cause of this high error rate is the interference and over-
lap between sound events on the timeline, as evidenced 
by the challenges of developing practical solutions for 
PSED [5], and thus it is important to address such chal-
lenges for PSED.

Early researchers proposed various statistical modeling 
approaches for SED, including hidden Markov models 
(HMM) [6], Nonnegative Matrix Factorization (NMF) 
[7], Gaussian Mixture Models (GMM) [8], and sup-
port vector machines (SVMs) [9], among other statisti-
cal modeling approaches. Although these classification 
methods have good performance, they require complex 
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feature extraction methods and are not suitable for large-
scale datasets and overlapping sound events [10].

In recent years, with the rapid development of deep 
neural networks (DNN) and the increasing size of data-
sets, DNN-based models have become the dominant 
methods where the audio representations can be auto-
matically learned from data without complex feature 
extraction methods. Feedforward Neural Networks 
(FNN) for sound event classification perform signifi-
cantly better than Support Vector Machines (SVMs) at 
low signal-to-noise ratio (SNR) levels [11]. Supervised 
deep learning methods perform well in the absence of 
prior knowledge and have achieved advanced results 
in SED tasks [12, 13]. Convolutional Neural Networks 
(CNNs) were first applied to improve the PSED task in 
[14–16]. In a recent study, frequency dynamic convolu-
tion (FDY conv) [17] used a convolution kernel that var-
ied along the frequency dimension, and the base kernel 
was a weighted sum using frequency-adaptive attention 
weights, to obtain a frequency-adaptive convolution ker-
nel. The SED model with FDY conv has achieved state-of-
the-art performance on the domestic environment sound 
event detection (DESED) real validation dataset [17–19].

Capsule networks (CapsNet) [20] have recently 
been gradually introduced for SED tasks due to their 
unique capsule structure and dynamic routing mecha-
nism, which separates individual sound events from 
overlapping mixtures by selecting the most represent-
ative spectral features of each sound event [10, 21], giv-
ing promising performance for the PSED problem. In 
another study [22], Iqbal et  al. constructed a CapsNet 
model for the SED task that uses gated convolution in 
the initial layer and a parallel attention mechanism in 
the final capsule layer and combines the outputs of these 
two layers for the final sound event prediction. The algo-
rithm was evaluated on the weakly labeled dataset of the 
DCASE 2017 challenge [23] and showed great potential. 
Our work is built on this capsule network architecture as 
a baseline model.

Although existing capsule network-based frame-
works and other DNN-based detection methods have 

achieved good performance in PSED tasks, simple shal-
low convolutional networks are difficult to extract high-
level features and inadequate in capturing bi-directional 
dependencies in time-series data and obtaining con-
textual information. ResNet has shown excellent image 
classification and object recognition capabilities in the 
ImageNet Large Scale Visual Recognition Competition 
(ILSVRC) [24]. The technique of “skip connections” is 
utilized to effectively avoid overfitting of the deep net-
work and the loss of feature information. It also effec-
tively enhances the ability of convolutional blocks for 
feature extraction in the SED task [25, 26]. Therefore, in 
this paper, we refine the gated convolution of the baseline 
system, which consists of gated convolutions with atten-
tion layers, and add the technique of “skip connections” 
of residual networks, which enhances the feature extrac-
tion capability of our convolution module, and effectively 
avoids the problems of gradient vanishing of the deep 
network. Recurrent Neural Networks (RNNs) [27] are 
also frequently used in speech recognition [28] and SED 
[29–31] as a neural network for recognizing patterns in 
data sequences. The combination of CNNs and RNNs 
takes advantage of the characteristics of each structure, 
and it provides state-of-the-art performance, especially in 
the PSED case [32, 33]. CRNN combines the local shift-
invariance of CNNs and the ability to model short-term 
and long-term temporal dependencies provided by RNN 
layers. The architecture has also been used in almost all 
of the best-performing algorithms proposed in several 
recent research challenges, such as the detection and 
classification of acoustic scene and event (DCASE) chal-
lenge [34]. RNNs perform well in processing sequential 
data, but they can be limited by the problem of gradient 
disappearance during back propagation. Long short-term 
memory (LSTM) [35] and gated recurrent units (GRUs) 
[36] have been developed to improve RNNs by adding 
a “gate” structure. LSTM works by introducing three 
gates (input gate, forget gate, and output gate) and a cell 
state to control the flow of information. This allows the 
LSTM to efficiently deliver and retain long-term infor-
mation and thus better handle long-term dependencies. 

Fig. 1  Three types of detection tasks: clear boxes represent ground truth events, dark squared boxes represent sound event detection
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GRU is a simplified LSTM that has only two gates (reset 
and update gates) and but no cell state, instead it directly 
takes the hidden state as an output. In this paper, we 
choose Bidirectional GRU (BiGRU) [37] as the module 
to process time series data after the capsule layer. This 
model captures the fine-grained correlation between the 
data by accessing the two sequence directions, and effi-
ciently acquires the contextual information. It involves 
fewer parameters and less computation than LSTM.

In this paper, we propose a new model architecture Res-
Capsnet-BiGRU for PSED. The model mainly consists of 
three modules, CRAM, capsule layer, and BiGRU Model. 
Specifically, we use CRAM instead of the traditional con-
volutional layer to extract high-level features that closely 
correlate with sound events, while ignoring irrelevant 
information such as background noise. Then, a dynamic 
routing mechanism is introduced in the capsule layer to 
effectively detect overlapping sound events. To obtain 
contextual information, BiGRU with time-distributed 
fully connected layers is adopted after the capsule layer. 
We conducted experiments on the VWLSD [38] and the 
DESD [39, 40]. The experimental results show that, com-
pared with the baseline system [22], the method proposed 
in this paper has significant performance improvements.

•	 We introduce a customized residual attention mod-
ule (CRAM) to improve the audio features extracted 
from the input log-mel spectrogram.

•	 We introduce the BiGRU model to better capture the 
long-term dependent information in sequence data 
as well as the temporal context information.

•	 We perform extensive experiments to show the 
improved performance of our proposed model.

2 � Capsule layer
The model of capsule networks was originally proposed 
in [20]. The main idea is to transform the inputs and out-
puts of capsule neurons from scalar to vector form to 
reduce the loss of feature information and improve the 
SED ability of the model.

The capsule network mainly consists of PrimaryCaps 
and DigitCaps, where PrimaryCaps, also known as the 
low-level capsule layer, includes convolution, reshaping 
and compression, and uses Relu as a nonlinear activation 
function. And DigitCaps is the high-level capsule layer of 
the capsule network, which is responsible for integrating 
the low-level features (vectors output from the Primary-
Caps layer) into high-level semantic information through 
the dynamic routing mechanism, and finally outputs the 
classification results. It is the core of the whole model and 
makes appropriate prediction of the final classification by 
learning the positional relationship between the local and 
the whole. Simply speaking, the low-level capsules are used 

to detect the probability of occurrence and gesture of some 
specific patterns, and the high-level capsules are used to 
detect more complex dynamic patterns. Each capsule con-
sists of several neurons, and the output of each neuron 
represents a different property of the same object. This pro-
vides a great advantage in object recognition, i.e., recogniz-
ing the whole by identifying some of the properties of an 
object. For example, when multiple sound events overlap in 
the time or frequency domain (e.g., dog barking and human 
voice), traditional CNNs may confuse different sound event 
features due to the local receptive fields of the convolu-
tional operation, whereas capsule networks construct the 
spatial-temporal distribution structure of the frequency 
and duration of sound events through the ‘‘gesture matrix’’, 
which assigns features with different frequencies at the 
same point in time (e.g., a high-frequency bird chirping and 
a low-frequency engine sound) to different capsules, and at 
the same time, associates features with the same frequency 
at different time segments (e.g., intermittent knocking on 
the door) with the same frequency. At the same time, fea-
tures of the same frequency (e.g., intermittent knocking) 
are associated with different time segments.

Table  1 lists the differences between capsule vec-
tor neurons and traditional scalar neurons, where xi , 
i = 1, 2, ..., n , represent the inputs to the traditional neu-
rons, ui , i = 1, 2, ..., n , represent the low-level capsules. 
ûj , j = 1, 2, ..., n represent the predictions from ui to the 
high-level capsule v . wi , i = 1, 2, ..., n , represent the cor-
responding weights, b represents the bias, and  rep-
resents the weighted sum. f (x) and Squash(x) stand for 
the activation functions.

The dynamic routing algorithm is introduced to 
match the capsule representing the timeframe in Pri-
maryCaps with the capsule representing the event 
characteristics in DigitCaps. Its dynamic routing pro-
cess is shown in Fig.  2, and a nonlinear squash func-
tion is used to normalize the capsule output within the 
range of [0,1] as shown in Eq. (1).

(1)Vj =
{

∥

∥Sj
∥

∥/

(

1+
∥

∥Sj
∥

∥

2
)}

·
(

Sj/
∥

∥Sj
∥

∥

)

Table 1  Differences between capsule vector neurons and 
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here, vj is the output vector of high-level capsule j and sj 
is its total input.

where sj is the weighted sum of all prediction vectors ûj|i 
generated by low-level capsule i and passed to high-level 
capsule j,

while cij is computed as Softmax bij , which is the logarith-
mic prior probability between the low-level capsule i and 
high-level capsule j

where cij is iteratively refined in terms of bij , with bij ini-
tialized to 0. The consistency between vj and ûj|i is meas-
ured, and the higher the similarity between ûj|i and vj , 
the larger the increment of cij . This consistency is given 
by the scalar product aij = vj · ûj|i . The coefficients bij are 
updated as follows:

The whole process reflects the dynamic routing of 
all low-level capsule i in the L layer and all high-level 

(2)sj =
∑

cij · ûj|i

(3)ûj|i = Wijui

(4)cij =exp
(

bij
)

/
∑

k(bik)

(5)bij ←− bij + ûj|i · vj

capsule j in the L+ 1 layer. Due to this attribute of 
dynamic routing, CapsNet is not only able to han-
dle rich features and enable multi-level interactions 
between neurons but also allows for full training of 
the model without the need for extensive data aug-
mentation or a proprietary domain adaptation process, 
which provides a significant boost to PSED perfor-
mance [21].

3 � Proposed method
3.1 � Overview
In this section, we present a new model, i.e., the Res-
Capsnet-BiGRU model, for sound event detection, 
which consists of three modules, namely, the custom-
ized residual attention module (CRAM), capsule layer, 
and the BiGRU module. To extract high-level features 
of audio, we propose the CRAM, where we introduce 
two series-connected attention modules, which consists 
of gated convolutions with an attention layer to capture 
audio channel information. This is followed by a capsule 
layer with dynamic routing which facilitates the detection 
of overlapping sound events. Further, we introduce the 
BiGRU model to capture the contextual information and 
the bidirectional dependencies of the audio time series 
data. The detailed architecture of the model proposed is 
shown in Fig. 3. 

Fig. 2  Dynamic routing
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1)	 In the CRAM, the log-mel spectrogram is used as 
input to extract relevant audio features and convert 
the time-varying audio signal into a feature vector 
suitable for subsequent detection.

2)	 In the capsule layer, PrimaryCaps and DigitCaps are con-
nected through a so-called dynamic routing that encour-
ages learning part-whole relationships and improves the 
detection performance of the model in PSED.

Fig. 3  The architecture of ResCapsnet-BiGRU model
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3)	 In the BiGRU module, the time-distributed fully con-
nected layer is attached to learn the temporal con-
text information produced by the capsule layer with 
attention features and to estimate the probability of 
event activities.

3.2 � Customized residual attention module (CRAM)
We concatenate three CRAM blocks sequentially to 
extract features from the input audio representation, as 
shown in Fig. 4. In each CRAM, we introduce two atten-
tion modules, each consisting of a gated convolution with 
the attention layer, formulated as follows:

where X is the input feature map, which is a log-mel 
spectral feature map of dimension 240× 64 × 1 ; f (·) 
denotes a gated convolution operation with 64-channel 
kernel size 3× 3 and stride 1; σ is the sigmoid activation 
function for generating the attention weights. ⊙ is the 
Hadamard product operator and ϕ is the Relu activation 
function. To improve the extracted features, the output Y  
of the first attention module is further applied with one 
more attention module, as shown in Eq. (7).

In addition, to prevent the gradient vanishing prob-
lem, we introduce “skip connections” in the residual net-
work, which allow us to bypass the attention module and 
directly merge the input X and output Z of the module to 
obtain the feature map X ′ , as shown in Fig. 4. The process 
is formulated as follows:

where the shapes of the feature maps  X , Z and X ′ are 
denoted as h× w × c , in terms of their heights, width 
and number of channels. In our experiments, for the 
first CRAM, the log-mel spectrogram has a shape 
240× 64 × 1 , while the feature maps Z and X ′ both have 
a shape 240× 64 × 64.

Finally, we used a max-pooling layer to halve the 
dimension of the frequency axis of the CRAM output 
feature map X ′ , but maintaining the dimension of time 

(6)Y = ϕ(f (X)⊙ σ(f (X)))

(7)Z = ϕ(f (Y )⊙ σ(f (Y )))

(8)X
′

= X + Z

axis, and followed by a nonlinear activation function Relu
.

3.3 � The CapsNets layer
Following the baseline system [22], we also use the cap-
sule network module for the detection of overlapping 
audio events and capturing the spatial relationships 
among the events. The capsule network is composed of 
PrimaryCaps and DigitCaps.

The first layer of PrimaryCaps, also called low-
level capsules, consists of convolution, reshaping, and 
squashing, and uses Relu as a nonlinear activation 
function. First, the convolution acts on the feature map 
X

′ obtained after three CRAM convolutions, and after 
convolution and activation, PrimaryCap generates a 
low-level feature vector ui , i = 1, 2, ..., n , of dimension 
T

′
× F

′
× 16× 4 , where T ′ and F ′ are the number of 

frames and frequency bins obtained after convolu-
tion activation, and 16 is the number of PrimaryCaps 
channels and each channel consists of a 4-dimensional 
capsule. Here, 64 filters are used with a kernel size of 
3, and the time and frequency dimensions are set to 1 
and 2, respectively. After that, it is input to DigitCaps 
after the reshaping and batch normalization opera-
tions, which we also call high-level capsules. Since the 
previous layer is also a capsule layer, a dynamic rout-
ing algorithm is used between the two capsule lay-
ers, which matches the capsule representing the time 
frame in PrimaryCaps with the capsule representing 
the event features in DigitCaps, as described in detail 
in Sect. 2.

The output of the low-level capsule ui , i = 1, 2, ..., n , 
is first multiplied by the weight matrix wi , i = 1, 2, ..., n , 
to compute the prediction vector ûj , j = 1, 2, ..., n of the 
high-level capsule. Then they are weighted sum to obtain 
the output vector v , whose weight is determined by the 
dynamic routing, which aims at allowing the bottom-
level capsule to autonomously choose the optimal path 
for the information to be propagated to the high-level 
capsule. Finally, the output vector is nonlinearly mapped 
to obtain a high-level feature vector of dimension 
T

′
× K × 8 , where 8 is the dimension of DigitCaps, and 

K  is the number of sound event classes.

Fig. 4  Customized residual attention module
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3.4 � BiGRU model
Temporal dependencies are important in sound event 
analysis tasks as shown in [29, 41]. To capture the bi-
directional dependencies, we introduce the BiGRU mod-
ule for representing contextual information. This module 
consists of BiGRU and a fully connected layer.

The BiGRU module consists of two independent gated 
recurrent units (GRUs), as shown in Fig. 5. The output of 
the capsule layer is reshaped into a two-dimensional ten-
sor T ′

× (K × 8) , which is later inputted into the BiGRU, 
as follows:

First, the input sequence is a tensor of 
X = [x0, x1, ..., xt ] , with xt denoting the t-th element in 
the input sequence. The forward GRU is responsible for 
processing the time series information from the begin-
ning of the sequence to the current time step to produce 
a hidden forward sequence 

→

ht , while the reverse GRU is 
responsible for processing the time series information 
from the current time step to the end of the sequence to 
compute a reverse hidden sequence 

←

ht . These two GRU 
units are run in parallel, and the outputs are merged to 
form the final output yt . The symbol [.; .] denotes the vec-
tor splicing operation.

To obtain the probability of event activity per frame, 
we pass the hidden state output yt to a feedforward layer 
with a sigmoid activation function to obtain a tensor of 
shape T ′

× K  , with K  being the number of sound event 
classes.

(9)
→

ht = GRU(
→

ht−1, xt)

(10)
←

ht = GRU(
←

ht+1, xt)

(11)yt = [
→

ht;
←

ht ]

The output of the BiGRU Model is a frame-level pre-
diction, i.e., the probability of sound event activity on 
each frame. However, in this paper, we are using weakly 
labeled data where only clip-level labels are available. 
Therefore, we need to aggregate the frame-level predic-
tions into the clip-level predictions by the softmax func-
tion defined as follows,

where yi ∈ [0, 1] represents the frame-level predicted 
probability of a class of sound events and yl ∈ [0, 1] rep-
resents the clip-level aggregation probability of the 
events. We then set a threshold τ1 to detect the presence 
of event l . When yl τ1 , sound event l exists. To calculate 
time information, we threshold the probabilities of yi 
with another value τ2 , then the onset and offset times are 
determined from the obtained binary matrix.

4 � Experiments
4.1 � Dataset and performance metrics
Our study utilized the Vehicle Weakly Labeled Sound 
Dataset (VWLSD) from DCASE 2017 Task 4 and the 
Domestic Environment Sound Dataset (DESD) from 
DCASE 2022 Task 4 for experiments. Both datasets are 
subsets of AudioSet, with each audio clip lasting 10 s and 
corresponding to one or multiple sound events. VWLSD 
consists of 17 sound event categories, including 9 warn-
ing sounds and 8 vehicle sounds. It is divided into a train-
ing set (51,172 audio clips), a validation set (488 audio 
clips), and an evaluation set (1103 audio clips). The DESD 
contains 10 sound event categories from daily life scenar-
ios, such as Dishes and Speech. It includes a training set 
(4784 real audio clips and 10,000 synthesized audio clips), 
a validation set (1000 audio clips), and a test set (360 
audio clips). In these datasets, two tasks are performed 
for evaluation: the AT and the SED, where the AT aims 
at predicting the type of sound events contained in the 

(12)yl =
∑

i
yiexp

(

yi
)

/
∑

i
exp

(

yi
)

Fig. 5  BiGRU architecture
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audio clips, and the SED detects the onset and offset of 
each sound event, apart from predicting its class.

For these two tasks, our study uses the evaluation met-
rics including Precision (P), Recall (R), and F-score (F1), 
which can measure the performance of SED, as in [42]. In 
this paper, F1 is used to evaluate the performance of SED.

4.2 � Experimental setup
All experiments are performed by the TensorFlow frame-
work. GCCaps [22] is chosen as the baseline model. The 
key parameters and structures of the proposed model are 
shown in Tables 2 and 3. More specifically, Table 2 details 
the parameters of CRAM in the feature extraction pro-
cess, while Table 3 details the parameter settings of Pri-
maryCaps, DigitCaps, and BiGRU modules.

The audio signal sampled at 16,000 Hz is converted 
to log-mel spectrogram as input to the system. The log-
mel spectrograms were computed using a 64 ms frame 
length, 20 ms overlap between neighboring windows, and 
64 mel-frequency bins per frame. For each 10 s sample, 
this gives a feature vector of dimension 24 × 64.

To speed up convergence and prevent overfitting, batch 
normalization [43] and dropout [44, 45] operations are 
used after the convolutional layer, and batch normaliza-
tion operation is used after the initial capsule layer. The 
dropout rate for the convolution in CRAM was set to 0.2, 
and in the initial capsule layer to 0.5.

In the training stage, the batch size was set to 44, and 
the initial learning rate was set to 0.001. The network was 
trained for a total of 30 epochs, with every two epochs 
decaying by a factor of 0.9, and in each epoch, the learned 
weights were saved. The number of dynamic routing iter-
ations was set to r = 3 . Binary cross-entropy was used as 
the loss function and Adam [46] as the optimizer.

The trainable parameters of our model are 486,810, 
in which the number of parameters of the 3-layer main 
CRAM module is about 410,500 and FLOPs is about 18 
B. The parameters of BiGRU and full connection layer are 
55,680 and 20,480, respectively, and FLOPs are 2.24 M 
and 1.23 M, respectively.

For VWLSD, the number of events in the test and eval-
uation sets is balanced, while the number of events in the 

training set is not balanced, which may lead to classifica-
tion bias. The data balancing technique proposed in [47] 
is used to minimize the impact of this problem.

During inference, the models that achieved the high-
est accuracy on the validation set were selected and their 
predictions were averaged. The detection thresholds were 
set to τ1 = −1 and τ2 = 0.4 for our system. For SED, the 
dilation and erosion sizes were set to 10 and 5, respec-
tively. For the other hyper-parameters, these values were 
determined based on experiments on the validation set.

4.3 � Results and discussion
The experiments are performed in four aspects, i.e., 
choice of thresholds, CRAM for feature extraction, com-
parison between the proposed ResCapsnet-BiGRU and 
other methods, and ablation experiments.

4.3.1 � Empirical choice of thresholds
In order to find a suitable threshold, we used a baseline 
system to conduct experiments on the VWLSD by adjust-
ing the thresholds, i.e., first setting the AT threshold 
τ1 = −1 , and a more appropriate threshold was selected 
by adjusting the threshold τ2 of the SED using the 0.1 step 
size setting. The related results are shown in Table 4.

With a higher threshold, although false alarms are 
reduced, some events are mis-detected, leading to higher 

Table 2  Model parameters (feature extraction)

Feature extraction

Conv1 Conv2 Conv3

Kernel size 64@3×3 64@3×3 64@3×3

Stride 1×1 1×1 1×1

Pooling size 2×2 2×2 2×2

Dropout rate 0.2 0.2 0.2

Activation function Relu Relu Relu

Table 3  Model parameters (capsule layers, BiGRU model)

Capsule layers BiGRU Model

Primary Capsule Event Capsule GRU​ FC

Kernel size 32@3×3 – – –

Step 1×2 – – –

Activation function Squashing Squashing Tanh Sigmoid

Number of hidden 
units

– – 64 17

Capsule dimension 4 8 – –

Table 4  Performance of the baseline method with various 
thresholds

Thresholds AT results SED results

F-score EER F-score EER

0.1 58.4% 15.6% 35.9% 2.46

0.2 58.6% 14.5% 44.1% 1.31

0.3 57.8% 15.1% 45.7% 0.8

0.4 58.9% 14.4% 45.5% 0.8

0.5 57.9% 15.6% 40.8% 0.79

0.6 57.4% 15.8% 36.5% 0.81
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precision and lower recall. Vice versa, for a lower thresh-
old, more false alarms might be introduced. We found 
empirically that a higher F-score is achieved for both AT 
and SED using a threshold 0.4. Therefore, subsequent 
experiments will be based on the thresholds τ1 = −1 and 
τ2 = 0.4.

4.3.2 � CRAM for feature extraction
Using the thresholds identified in Sect. 4.3.1, we perform 
experiments to study the impact of using CRAM for fea-
ture extraction. The results are shown in Table 5.

From the results, we can find that after the introduction 
of the CRAM, the F-score for AT and SED achieves a sig-
nificant improvement. Specifically, on the VWLSD, the 
F-score of AT is increased from 58.6 to 59.4% and that of 
SED from 46.3 to 46.7%. This result suggests that using 
CRAM can further validate its advantages in feature extrac-
tion, thus improving the SED performance of the model.

4.3.3 � Comparison with other methods
The proposed method is compared with GCCaps [22], 
GCRNN [47], GCNN [22], and CRNN [48]. GCCaps 
is the baseline system on which the proposed method 
is built. GCRNN uses gated convolutional and recur-
rent layers [49] instead of capsule layers. It achieved first 
place in the audio labeling subtask of Task 4. GCNN [22] 
model is similar to GCRNN but not including the recur-
rent layers. The results for AT and SED are shown in 
Tables 6 and 7, respectively. On the VWLSD, our method 
outperformed the comparable models on both AT and 
SED tasks, achieving the F-scores for AT and SED at 
62.1% and 54.1%, respectively. By using CRAM for fea-
ture extraction, deeper channel features are successfully 
extracted, which significantly improves the performance 
of audio detection. In the SED task, the recurrent layer 
significantly improves the localization of ResCapsnet-
BiGRU and GCRNN because its scores are much higher 
than that of GCNN, and Recall is also much better. Com-
pared to GCRNN, our ResCapsnet-BiGRU achieves 
a 10.8% improvement in F-score. This indicates that 
the combination of the capsule layer and BiGRU in our 
method enhances the recurrent layer in the GCRNN, and 
improves the experimental performance of the PSED. In 
addition, compared to the Capsule-transformer [50] pro-
posed in 2024, our strategy improves by 1.5% and 6.2% on 
AT and SED tasks, respectively.

On the DESD, ResCapsnet-BiGRU achieves better per-
formance, with 77.3% and 75.9% F in AT and SED tasks, 
respectively. Mainly due to the obvious heterogeneity 

Table 5  By the comparison between not using CRAM and using 
CRAM for feature extraction

Evaluation metrics Not using CRAM Using CRAM

AT results SED results AT results SED results

F-score 58.6% 46.3% 59.4% 46.7%

Precision 59.2% 58.3% 54.6% 52.2%

Recall 57.9% 38.4% 65.2% 42.2%

EER - 0.76 - 0.82

Table 6  Performance results of audio tagging subtask

Method DataSet F-score Precision Recall

GCNN VWLSD 57.2% 59.0% 57.2%

GCRNN VWLSD 57.3% 53.6% 59.6%

GCCaps VWLSD 58.6% 59.2% 57.9%

Capsule-transformer VWLSD 60.6% 62.9% 57.6%

ResCapsnet-BiGRU​ VWLSD 62.1% (61.7%−62.5%) 57.4% (57.0%−57.8%) 67.7% (67.3%−68.1%)

ResCapsnet-BiGRU​ DESD 77.3% (76.4%−78.2%) 77.5% (76.6%−78.4%) 77.2% (76.1%−78.3%)

Table 7  Performance results of sound event detection subtask

Method DataSet F-score Precision Recall

GCNN VWLSD 37.5% 46.6% 31.1%

GCRNN VWLSD 43.3% 57.9% 34.8%

GCCaps VWLSD 46.3% 58.3% 38.4%

Capsule-transformer VWLSD 47.9% 68.7% 29.1%

ResCapsnet-BiGRU​ VWLSD 54.1% (53.7−54.5%) 48.4% (48.0−48.8%) 61.3% (59.8−61.8%)

ResCapsnet-BiGRU​ DESD 75.9% (75.4−76.4%) 75.0% (74.6−75.4%) 76.8% (76.4−77.3%)



Page 10 of 14Sun et al. EURASIP Journal on Audio, Speech, and Music Processing         (2025) 2025:22 

Fig. 6  Performance as a function of the number of epochs for (a) accuracy and (b) loss. The proposed ResCapsnet-BiGRU model has the highest 
accuracy and the lowest loss

Table 8  F-score of audio tagging subtask for each event

Train horn Air horn, truck horn Car alarm Reversing beeps Bicycle Skateboard Ambulance Fire engine, 
fire truck

Civil defense siren

81.5% 64.7% 65.5% 67.9% 49.4% 72.7% 58.6% 67.3% 87.9%

Police car Screaming Car Car passing by Bus Truck Motorcycle Train Micro average

65.3% 88.5% 66.3% 38.2% 43.1% 48.9% 60.3% 79.2% 62.1%



Page 11 of 14Sun et al. EURASIP Journal on Audio, Speech, and Music Processing         (2025) 2025:22 	

between the 10 sound event classes in DESD (e.g., sig-
nificant differences in temporal dynamics and spectral 
patterns between speech and dishes) that contribute to 
discriminative feature learning. This inherent diversity 
enables models to develop more robust class-specific 
representations, ultimately leading to improved classifi-
cation performance.

To obtain greater insight, we also compared the perfor-
mance of these models on the validation set as a function 
of the number of epochs. As evident in Fig.  6, our pro-
posal achieved the highest accuracy and lowest loss. In 
Fig.  6a, it can be seen that the accuracy decreases after 
a number of epochs. These issues are not observed with 
the training set, which suggests that the models are over-
fitting. However, as shown in the figures, the extent of 
this problem is greatly reduced when the network models 
GCCaps and ResCapsnet-BiGRU for capsule routing are 
used. It can be seen in Fig. 6b that all of the models even-
tually diverge in terms of the value of the loss function.

Tables  8 and 9 show the model results for all sound 
events on the two subtasks on the VWLSD. In the AT 
subtask, “Civil defense siren, Train horn” and “Scream-
ing” events were classified with higher accuracy, and 
“Car passing” and “Bus” events were classified with 
lower accuracy. In the SED subtask, events such as “Civil 
defense siren” had low error rates, while events such as 
“Bicycle”, “Car Passing by”, and “Bus” had higher error 
rates.

These results show that the use of improved capsule 
dynamic routing leads to improved accuracy in the AT 
subtask and reduced error rates in the SED subtask. Spe-
cifically, the introduction of the CRAM can fully utilize 

the raw feature information, allowing the model to learn 
more audio features. The routing algorithm of the capsule 
network enables the model to identify the whole-local 
relationship, which enhances the generalization ability of 
the model. The introduction of BiGRU model enables the 
model to learn contextual information, which enhances 
the temporal localization ability of the model. Therefore, 
the model achieves satisfactory performance on both the 
AT subtask and the SED subtask.

4.3.4 � Ablation experiments
Change the number of hidden units in the BiGRU 
model. Figure 7 shows the experiments under varying the 
number of hidden units in the BiGRU Model, and we can 
see that both AT and SED achieve a significant improve-
ment in F-score compared to the baseline system. In par-
ticular, the best model performance is achieved when the 
number of hidden units is set to 64. The F-score of AT 
improves to 62.1%, which is a 3.5% increase compared to 
the baseline, and the F-score of SED improves to 54.1%, 
which is a 7.8% increase compared to the baseline. These 
results show that for our model, with the number of hid-
den units of the BiGRU Model set to 64, the model is bet-
ter able to bi-directionally process the time sequence data 
and learn the rich temporal information, which results in 
a significant enhancement in the localization and detec-
tion of sound events.

Changing the model learning rate. Figure  8 shows 
the experiment under varying model learning rate, in 
which case our model decreased the F-score results 
with the increase in learning rate and increased the ER 

Table 9  Error rate of sound event detection subtask for each event

Train horn Air horn, truck horn Car alarm Reversing beeps Bicycle Skateboard Ambulance Fire engine, 
fire truck

Civil defense siren

0.67 0.85 0.72 0.80 1.7 0.88 0.94 0.86 0.33

Police car Screaming Car Car passing by Bus Truck Motorcycle Train Micro average

0.85 0.7 0.84 1.4 1.46 1.32 0.88 0.73 0.79

Fig. 7  a and b represent the AT results and SED results of the model with different numbers of hidden units in BiGRU, respectively
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results instead. The F-score of AT is decreased from 
62.1 to 58.9% and the F-score of SED is decreased from 
54.1 to 50.9% when the Learning rate is increased from 
0.001 to 0.003. This result shows that when the learning 
rate is too large, it can lead to unstable model training 
and the model parameters are updated too much during 
the training process, which leads to the possibility of the 
model ignoring more audio time information during the 
learning process. Based on the experiments, the learning 
rate of 0.001 was determined to be suitable for our model, 
which not only effectively accelerates the training of the 
model, but also improves the accuracy of the model.

5 � Conclusion
In this study, a hybrid model of CRAM and BiGRU on 
the basis of capsule architecture has been presented for 
the problem of polyphonic sound event detection. This 
model utilizes the powerful feature extraction capability 
of CRAM to extract richer and more relevant audio fea-
tures for SED. The dynamic routing algorithm is applied 
to the CapsNet layer to effectively identify overlapping 
sound events. Meanwhile, the BiGRU Model is used for 
sequence modeling to acquire contextual information 
from audio vector sequences by combining BiGRU with a 
time-distributed fully connected layer. We evaluated the 
model on the VWLSD and the DESD. Compared to the 
baseline system, our ResCapsnet-BiGRU model is shown 
to exhibit superior performance and robustness.

In the future, we will continue to explore more effi-
cient feature extraction techniques and investigate how 
to improve dynamic routing capsule networks to better 
handle dynamic and complex patterns, thereby further 
improving the accuracy of SED.
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