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Abstract

Sound event detection (SED) is a challenging task where ambient sound events are detected from a given audio sig-
nal, which includes categorizing the events and estimating their onset and offset times. Deep learning methods such
as convolutional neural networks (CNN) and recurrent neural networks (RNN) have achieved promising performance
in SED. However, for overlapping sound events, existing deep learning methods are still limited in detecting individual
sound events from their mixtures. Inspired by the success of the dynamic routing mechanism of the capsule net-
work (CapsNet), this paper proposes a capsule network model (ResCapsnet-BiGRU) based on a customized residual
attention module (CRAM) and bidirectional gated recurrent unit (BiGRU). CRAM is utilized to extract features from log-
mel spectrograms that are relevant to sound events. Through dynamic routing, the capsule network can address

the overlapping sound events problem. In addition, the BiGRU with time-distributed fully connected layers is adopted
to obtain contextual information. Our proposed method was evaluated on two datasets: the Vehicle Weakly Labeled
Sound Dataset (VWLSD , DCASE 2017 Task 4) and the Domestic Environment Sound Dataset (DESD , DCASE 2022 Task
4). It achieved F-scores of 62.1% and 75.9% on the Audio Tagging (AT) task, and 54.1% and 59.0% on the sound event
detection (SED) task, respectively. The source codes are available at https://github.com/123sunbing/ResCapsnet.git.

Keywords Sound event detection, Capsule network, CRAM, BiGRU, Dynamic routing

1 Introduction

Sound event detection (SED) is an important research
direction in the field of audio processing, and its main
tasks include localization and classification of sound
events. Localization refers to determining the start time
and end time of a sound event in the audio stream, i.e.,
the boundary of the sound event; classification refers
to identifying the category of the sound event, such as
human voice, car sound, dog barking, and so on. SEDs are
widely used in various fields such as machine perception,
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automatic monitoring, multimedia information retrieval,
and anomaly detection [1-3]. Among them, polyphonic
sound event detection (PSED) [4] aims to detect sound
events from multiple categories, and sound events may
occur simultaneously as in Fig. 1. However, existing
PSED methods suffer from high error rates. The root
cause of this high error rate is the interference and over-
lap between sound events on the timeline, as evidenced
by the challenges of developing practical solutions for
PSED [5], and thus it is important to address such chal-
lenges for PSED.

Early researchers proposed various statistical modeling
approaches for SED, including hidden Markov models
(HMM) [6], Nonnegative Matrix Factorization (NMF)
[7], Gaussian Mixture Models (GMM) [8], and sup-
port vector machines (SVMs) [9], among other statisti-
cal modeling approaches. Although these classification
methods have good performance, they require complex
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Fig. 1 Three types of detection tasks: clear boxes represent ground truth events, dark squared boxes represent sound event detection

feature extraction methods and are not suitable for large-
scale datasets and overlapping sound events [10].

In recent years, with the rapid development of deep
neural networks (DNN) and the increasing size of data-
sets, DNN-based models have become the dominant
methods where the audio representations can be auto-
matically learned from data without complex feature
extraction methods. Feedforward Neural Networks
(ENN) for sound event classification perform signifi-
cantly better than Support Vector Machines (SVMs) at
low signal-to-noise ratio (SNR) levels [11]. Supervised
deep learning methods perform well in the absence of
prior knowledge and have achieved advanced results
in SED tasks [12, 13]. Convolutional Neural Networks
(CNNs) were first applied to improve the PSED task in
[14-16]. In a recent study, frequency dynamic convolu-
tion (FDY conv) [17] used a convolution kernel that var-
ied along the frequency dimension, and the base kernel
was a weighted sum using frequency-adaptive attention
weights, to obtain a frequency-adaptive convolution ker-
nel. The SED model with FDY conv has achieved state-of-
the-art performance on the domestic environment sound
event detection (DESED) real validation dataset [17-19].

Capsule networks (CapsNet) [20] have recently
been gradually introduced for SED tasks due to their
unique capsule structure and dynamic routing mecha-
nism, which separates individual sound events from
overlapping mixtures by selecting the most represent-
ative spectral features of each sound event [10, 21], giv-
ing promising performance for the PSED problem. In
another study [22], Igbal et al. constructed a CapsNet
model for the SED task that uses gated convolution in
the initial layer and a parallel attention mechanism in
the final capsule layer and combines the outputs of these
two layers for the final sound event prediction. The algo-
rithm was evaluated on the weakly labeled dataset of the
DCASE 2017 challenge [23] and showed great potential.
Our work is built on this capsule network architecture as
a baseline model.

Although existing capsule network-based frame-
works and other DNN-based detection methods have

achieved good performance in PSED tasks, simple shal-
low convolutional networks are difficult to extract high-
level features and inadequate in capturing bi-directional
dependencies in time-series data and obtaining con-
textual information. ResNet has shown excellent image
classification and object recognition capabilities in the
ImageNet Large Scale Visual Recognition Competition
(ILSVRC) [24]. The technique of “skip connections” is
utilized to effectively avoid overfitting of the deep net-
work and the loss of feature information. It also effec-
tively enhances the ability of convolutional blocks for
feature extraction in the SED task [25, 26]. Therefore, in
this paper, we refine the gated convolution of the baseline
system, which consists of gated convolutions with atten-
tion layers, and add the technique of “skip connections”
of residual networks, which enhances the feature extrac-
tion capability of our convolution module, and effectively
avoids the problems of gradient vanishing of the deep
network. Recurrent Neural Networks (RNNs) [27] are
also frequently used in speech recognition [28] and SED
[29-31] as a neural network for recognizing patterns in
data sequences. The combination of CNNs and RNNs
takes advantage of the characteristics of each structure,
and it provides state-of-the-art performance, especially in
the PSED case [32, 33]. CRNN combines the local shift-
invariance of CNNs and the ability to model short-term
and long-term temporal dependencies provided by RNN
layers. The architecture has also been used in almost all
of the best-performing algorithms proposed in several
recent research challenges, such as the detection and
classification of acoustic scene and event (DCASE) chal-
lenge [34]. RNNs perform well in processing sequential
data, but they can be limited by the problem of gradient
disappearance during back propagation. Long short-term
memory (LSTM) [35] and gated recurrent units (GRUs)
[36] have been developed to improve RNNs by adding
a “gate” structure. LSTM works by introducing three
gates (input gate, forget gate, and output gate) and a cell
state to control the flow of information. This allows the
LSTM to efficiently deliver and retain long-term infor-
mation and thus better handle long-term dependencies.
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GRU is a simplified LSTM that has only two gates (reset
and update gates) and but no cell state, instead it directly
takes the hidden state as an output. In this paper, we
choose Bidirectional GRU (BiGRU) [37] as the module
to process time series data after the capsule layer. This
model captures the fine-grained correlation between the
data by accessing the two sequence directions, and effi-
ciently acquires the contextual information. It involves
fewer parameters and less computation than LSTM.

In this paper, we propose a new model architecture Res-
Capsnet-BiGRU for PSED. The model mainly consists of
three modules, CRAM, capsule layer, and BiGRU Model.
Specifically, we use CRAM instead of the traditional con-
volutional layer to extract high-level features that closely
correlate with sound events, while ignoring irrelevant
information such as background noise. Then, a dynamic
routing mechanism is introduced in the capsule layer to
effectively detect overlapping sound events. To obtain
contextual information, BiGRU with time-distributed
fully connected layers is adopted after the capsule layer.
We conducted experiments on the VWLSD [38] and the
DESD [39, 40]. The experimental results show that, com-
pared with the baseline system [22], the method proposed
in this paper has significant performance improvements.

+ We introduce a customized residual attention mod-
ule (CRAM) to improve the audio features extracted
from the input log-mel spectrogram.

+  We introduce the BiGRU model to better capture the
long-term dependent information in sequence data
as well as the temporal context information.

+ We perform extensive experiments to show the
improved performance of our proposed model.

2 Capsule layer

The model of capsule networks was originally proposed
in [20]. The main idea is to transform the inputs and out-
puts of capsule neurons from scalar to vector form to
reduce the loss of feature information and improve the
SED ability of the model.

The capsule network mainly consists of PrimaryCaps
and DigitCaps, where PrimaryCaps, also known as the
low-level capsule layer, includes convolution, reshaping
and compression, and uses Relu as a nonlinear activation
function. And DigitCaps is the high-level capsule layer of
the capsule network, which is responsible for integrating
the low-level features (vectors output from the Primary-
Caps layer) into high-level semantic information through
the dynamic routing mechanism, and finally outputs the
classification results. It is the core of the whole model and
makes appropriate prediction of the final classification by
learning the positional relationship between the local and
the whole. Simply speaking, the low-level capsules are used
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to detect the probability of occurrence and gesture of some
specific patterns, and the high-level capsules are used to
detect more complex dynamic patterns. Each capsule con-
sists of several neurons, and the output of each neuron
represents a different property of the same object. This pro-
vides a great advantage in object recognition, i.e., recogniz-
ing the whole by identifying some of the properties of an
object. For example, when multiple sound events overlap in
the time or frequency domain (e.g., dog barking and human
voice), traditional CNNs may confuse different sound event
features due to the local receptive fields of the convolu-
tional operation, whereas capsule networks construct the
spatial-temporal distribution structure of the frequency
and duration of sound events through the “gesture matrix’,
which assigns features with different frequencies at the
same point in time (e.g., a high-frequency bird chirping and
a low-frequency engine sound) to different capsules, and at
the same time, associates features with the same frequency
at different time segments (e.g., intermittent knocking on
the door) with the same frequency. At the same time, fea-
tures of the same frequency (e.g., intermittent knocking)
are associated with different time segments.

Table 1 lists the differences between capsule vec-
tor neurons and traditional scalar neurons, where x;,
i =1,2,..,n, represent the inputs to the traditional neu-
rons, u;, i = 1,2, ..., n, represent the low-level capsules.
i, j = 1,2,..,n represent the predictions from u; to the
high-level capsule v. w;, i = 1,2, ..., n, represent the cor-
responding weights, b represents the bias, and > rep-
resents the weighted sum. f(x) and Squash(x) stand for
the activation functions.

The dynamic routing algorithm is introduced to
match the capsule representing the timeframe in Pri-
maryCaps with the capsule representing the event
characteristics in DigitCaps. Its dynamic routing pro-
cess is shown in Fig. 2, and a nonlinear squash func-
tion is used to normalize the capsule output within the
range of [0,1] as shown in Eq. (1).

vi={lIsil/(x+l1s1%) } - (si/llsi1) (1)

Table 1 Differences between capsule vector neurons and
traditional neurons

Capsule vector neurons vs. traditional neurons

Input Ui Xi

Affine transformation Oy = Wju; -

Weighted sum 5= > Gl aj =y, wxj+b
Nonlinear activation v = {HS/H/(W 4 HS/HZ)} “s/0s0) h; =f(a))
Output vj hj
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Fig. 2 Dynamic routing

here, v; is the output vector of high-level capsule j and s;
is its total input.

s5i=>_cy- il 2)

where s; is the weighted sum of all prediction vectors iL;;
generated by low-level capsule i and passed to high-level
capsule j,

itjji = Wiji 3)

while ¢;j is computed as Softmax b;j, which is the logarith-
mic prior probability between the low-level capsule i and
high-level capsule j

cij =exp(bij) /> 1 (bix) (4)

where c;; is iteratively refined in terms of by, with b;; ini-
tialized to 0. The consistency between v; and i;; is meas-
ured, and the higher the similarity between #;; and vj,
the larger the increment of c;;. This consistency is given
by the scalar product a;; = vj - itj|i. The coefficients b;; are
updated as follows:

bij <— bij + ij); - vj (5)

The whole process reflects the dynamic routing of
all low-level capsule i in the L layer and all high-level

capsule j in the L+ 1 layer. Due to this attribute of
dynamic routing, CapsNet is not only able to han-
dle rich features and enable multi-level interactions
between neurons but also allows for full training of
the model without the need for extensive data aug-
mentation or a proprietary domain adaptation process,
which provides a significant boost to PSED perfor-
mance [21].

3 Proposed method

3.1 Overview

In this section, we present a new model, i.e., the Res-
Capsnet-BiGRU model, for sound event detection,
which consists of three modules, namely, the custom-
ized residual attention module (CRAM), capsule layer,
and the BiGRU module. To extract high-level features
of audio, we propose the CRAM, where we introduce
two series-connected attention modules, which consists
of gated convolutions with an attention layer to capture
audio channel information. This is followed by a capsule
layer with dynamic routing which facilitates the detection
of overlapping sound events. Further, we introduce the
BiGRU model to capture the contextual information and
the bidirectional dependencies of the audio time series
data. The detailed architecture of the model proposed is
shown in Fig. 3.
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Fig. 3 The architecture of ResCapsnet-BiGRU model

1) In the CRAM, the log-mel spectrogram is used as 2) In the capsule layer, PrimaryCaps and DigitCaps are con-
input to extract relevant audio features and convert nected through a so-called dynamic routing that encour-
the time-varying audio signal into a feature vector ages learning part-whole relationships and improves the
suitable for subsequent detection. detection performance of the model in PSED.
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3) In the BiGRU module, the time-distributed fully con-
nected layer is attached to learn the temporal con-
text information produced by the capsule layer with
attention features and to estimate the probability of
event activities.

3.2 Customized residual attention module (CRAM)

We concatenate three CRAM blocks sequentially to
extract features from the input audio representation, as
shown in Fig. 4. In each CRAM, we introduce two atten-
tion modules, each consisting of a gated convolution with
the attention layer, formulated as follows:

Y = o(f(X) ©o(f(X))) (6)

Z=9p(f(Y)Oo(f(Y)) (7)

where X is the input feature map, which is a log-mel
spectral feature map of dimension 240 x 64 x 1; f(-)
denotes a gated convolution operation with 64-channel
kernel size 3 x 3 and stride 1; o is the sigmoid activation
function for generating the attention weights. © is the
Hadamard product operator and ¢ is the Relu activation
function. To improve the extracted features, the output Y’
of the first attention module is further applied with one
more attention module, as shown in Eq. (7).

In addition, to prevent the gradient vanishing prob-
lem, we introduce “skip connections” in the residual net-
work, which allow us to bypass the attention module and
directly merge the input X and output Z of the module to
obtain the feature map X ', as shown in Fig. 4. The process
is formulated as follows:

X =x+2z (8)

where the shapes of the feature maps X, Z and X' are
denoted as 71 x w x ¢, in terms of their heights, width
and number of channels. In our experiments, for the
first CRAM, the log-mel spectrogram has a shape
240 x 64 x 1, while the feature maps Z and X "both have
a shape 240 x 64 x 64.

Finally, we used a max-pooling layer to halve the
dimension of the frequency axis of the CRAM output
feature map X/, but maintaining the dimension of time
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axis, and followed by a nonlinear activation function Relu

3.3 The CapsNets layer

Following the baseline system [22], we also use the cap-
sule network module for the detection of overlapping
audio events and capturing the spatial relationships
among the events. The capsule network is composed of
PrimaryCaps and DigitCaps.

The first layer of PrimaryCaps, also called low-
level capsules, consists of convolution, reshaping, and
squashing, and uses Relu as a nonlinear activation
function. First, the convolution acts on the feature map
X' obtained after three CRAM convolutions, and after
convolution and activation, PrimaryCap generates a
low-level feature vector u;, i = 1,2,...,n, of dimension
T' x F x 16 x 4, where T' and F are the number of
frames and frequency bins obtained after convolu-
tion activation, and 16 is the number of PrimaryCaps
channels and each channel consists of a 4-dimensional
capsule. Here, 64 filters are used with a kernel size of
3, and the time and frequency dimensions are set to 1
and 2, respectively. After that, it is input to DigitCaps
after the reshaping and batch normalization opera-
tions, which we also call high-level capsules. Since the
previous layer is also a capsule layer, a dynamic rout-
ing algorithm is used between the two capsule lay-
ers, which matches the capsule representing the time
frame in PrimaryCaps with the capsule representing
the event features in DigitCaps, as described in detail
in Sect. 2.

The output of the low-level capsule u;, i =1,2,...,n,
is first multiplied by the weight matrix w;, i = 1,2,..,n,
to compute the prediction vector #;, j = 1,2,...,n of the
high-level capsule. Then they are weighted sum to obtain
the output vector v, whose weight is determined by the
dynamic routing, which aims at allowing the bottom-
level capsule to autonomously choose the optimal path
for the information to be propagated to the high-level
capsule. Finally, the output vector is nonlinearly mapped
to obtain a high-level feature vector of dimension
T' x K x 8, where 8 is the dimension of DigitCaps, and
K is the number of sound event classes.

f ? Relu
X >0

Conv

Relu
—>

» O~

Conv
Y

Fig. 4 Customized residual attention module

7 X' Max Pool
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3.4 BiGRU model

Temporal dependencies are important in sound event
analysis tasks as shown in [29, 41]. To capture the bi-
directional dependencies, we introduce the BiGRU mod-
ule for representing contextual information. This module
consists of BiGRU and a fully connected layer.

The BiGRU module consists of two independent gated
recurrent units (GRUs), as shown in Fig. 5. The output of
the capsule layer is reshaped into a two-dimensional ten-
sor T x (K x 8), which is later inputted into the BiGRU,
as follows:

Iy = GRU (hy_1,%;) )
}Z = GRU(h:rl,xt) (10)
Yt = [hj; IZ] (11)
First, the input sequence is a tensor of

X = [x0,%1, ..., %], with x; denoting the t-th element in
the input sequence. The forward GRU is responsible for
processing the time series information from the begin-
ning of the sequence to the current time step to produce
a hidden forward sequence /;, while the reverse GRU is
responsible for processing the time series information
from the current time step to the end, of the sequence to
compute a reverse hidden sequence /;. These two GRU
units are run in parallel, and the outputs are merged to
form the final output y;. The symbol [.; .] denotes the vec-
tor splicing operation.

To obtain the probability of event activity per frame,
we pass the hidden state output y; to a feedforward layer
with a sigmoid activation function to obtain a tensor of
shape T x K , with K being the number of sound event
classes.
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The output of the BIGRU Model is a frame-level pre-
diction, i.e., the probability of sound event activity on
each frame. However, in this paper, we are using weakly
labeled data where only clip-level labels are available.
Therefore, we need to aggregate the frame-level predic-
tions into the clip-level predictions by the softmax func-
tion defined as follows,

yi=_ yiexp(yi)/_ exp(vi)

where y; € [0,1] represents the frame-level predicted
probability of a class of sound events and y; € [0, 1] rep-
resents the clip-level aggregation probability of the
events. We then set a threshold 7; to detect the presence
of event /. When y; 11, sound event [ exists. To calculate
time information, we threshold the probabilities of y;
with another value 15, then the onset and offset times are
determined from the obtained binary matrix.

(12)

4 Experiments

4.1 Dataset and performance metrics

Our study utilized the Vehicle Weakly Labeled Sound
Dataset (VWLSD) from DCASE 2017 Task 4 and the
Domestic Environment Sound Dataset (DESD) from
DCASE 2022 Task 4 for experiments. Both datasets are
subsets of AudioSet, with each audio clip lasting 10 s and
corresponding to one or multiple sound events. VWLSD
consists of 17 sound event categories, including 9 warn-
ing sounds and 8 vehicle sounds. It is divided into a train-
ing set (51,172 audio clips), a validation set (488 audio
clips), and an evaluation set (1103 audio clips). The DESD
contains 10 sound event categories from daily life scenar-
ios, such as Dishes and Speech. It includes a training set
(4784 real audio clips and 10,000 synthesized audio clips),
a validation set (1000 audio clips), and a test set (360
audio clips). In these datasets, two tasks are performed
for evaluation: the AT and the SED, where the AT aims
at predicting the type of sound events contained in the

: : : backward

Output layer @

Fig. 5 BiGRU architecture
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audio clips, and the SED detects the onset and offset of
each sound event, apart from predicting its class.

For these two tasks, our study uses the evaluation met-
rics including Precision (P), Recall (R), and F-score (F1),
which can measure the performance of SED, as in [42]. In
this paper, F1 is used to evaluate the performance of SED.

4.2 Experimental setup

All experiments are performed by the TensorFlow frame-
work. GCCaps [22] is chosen as the baseline model. The
key parameters and structures of the proposed model are
shown in Tables 2 and 3. More specifically, Table 2 details
the parameters of CRAM in the feature extraction pro-
cess, while Table 3 details the parameter settings of Pri-
maryCaps, DigitCaps, and BiGRU modules.

The audio signal sampled at 16,000 Hz is converted
to log-mel spectrogram as input to the system. The log-
mel spectrograms were computed using a 64 ms frame
length, 20 ms overlap between neighboring windows, and
64 mel-frequency bins per frame. For each 10 s sample,
this gives a feature vector of dimension 24 x 64.

To speed up convergence and prevent overfitting, batch
normalization [43] and dropout [44, 45] operations are
used after the convolutional layer, and batch normaliza-
tion operation is used after the initial capsule layer. The
dropout rate for the convolution in CRAM was set to 0.2,
and in the initial capsule layer to 0.5.

In the training stage, the batch size was set to 44, and
the initial learning rate was set to 0.001. The network was
trained for a total of 30 epochs, with every two epochs
decaying by a factor of 0.9, and in each epoch, the learned
weights were saved. The number of dynamic routing iter-
ations was set to r = 3. Binary cross-entropy was used as
the loss function and Adam [46] as the optimizer.

The trainable parameters of our model are 486,810,
in which the number of parameters of the 3-layer main
CRAM module is about 410,500 and FLOPs is about 18
B. The parameters of BiGRU and full connection layer are
55,680 and 20,480, respectively, and FLOPs are 2.24 M
and 1.23 M, respectively.

For VWLSD, the number of events in the test and eval-
uation sets is balanced, while the number of events in the

Table 2 Model parameters (feature extraction)

Feature extraction

Conv1 Conv2 Conv3
Kernel size 64@3x3 64@3x%3 64@3%x3
Stride 1x1 1x1 1x1
Pooling size 2x2 2%2 2x2
Dropout rate 0.2 0.2 0.2

Activation function Relu Relu Relu
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Table 3 Model parameters (capsule layers, BIGRU model)

Capsule layers BiGRU Model

Primary Capsule Event Capsule GRU FC

Kernel size 32@3%3 - - -
Step 1%2 - - -
Activation function Squashing

Number of hidden -
units

Tanh  Sigmoid

Squashing
- 64 17

Capsule dimension 4 8 - -

training set is not balanced, which may lead to classifica-
tion bias. The data balancing technique proposed in [47]
is used to minimize the impact of this problem.

During inference, the models that achieved the high-
est accuracy on the validation set were selected and their
predictions were averaged. The detection thresholds were
set to 71 = —1 and 73 = 0.4 for our system. For SED, the
dilation and erosion sizes were set to 10 and 5, respec-
tively. For the other hyper-parameters, these values were
determined based on experiments on the validation set.

4.3 Results and discussion

The experiments are performed in four aspects, i.e.,
choice of thresholds, CRAM for feature extraction, com-
parison between the proposed ResCapsnet-BiGRU and
other methods, and ablation experiments.

4.3.1 Empirical choice of thresholds
In order to find a suitable threshold, we used a baseline
system to conduct experiments on the VWLSD by adjust-
ing the thresholds, ie., first setting the AT threshold
71 = —1, and a more appropriate threshold was selected
by adjusting the threshold 73 of the SED using the 0.1 step
size setting. The related results are shown in Table 4.
With a higher threshold, although false alarms are
reduced, some events are mis-detected, leading to higher

Table 4 Performance of the baseline method with various
thresholds

Thresholds AT results SED results

F-score EER F-score EER
0.1 58.4% 15.6% 35.9% 246
02 58.6% 14.5% 44.1% 131
03 57.8% 15.1% 45.7% 0.8
04 58.9% 14.4% 45.5% 0.8
0.5 57.9% 15.6% 40.8% 0.79
06 57.4% 15.8% 36.5% 0.81




Sun et al. EURASIP Journal on Audio, Speech, and Music Processing

Table 5 By the comparison between not using CRAM and using
CRAM for feature extraction

Evaluation metrics Not using CRAM Using CRAM

AT results SED results AT results SED results

F-score 58.6% 46.3% 594% 46.7%
Precision 59.2% 58.3% 54.6% 52.2%
Recall 57.9% 38.4% 65.2% 42.2%
EER - 0.76 - 0.82

precision and lower recall. Vice versa, for a lower thresh-
old, more false alarms might be introduced. We found
empirically that a higher F-score is achieved for both AT
and SED using a threshold 0.4. Therefore, subsequent
experiments will be based on the thresholds 7; = —1 and
7o = 0.4.

4.3.2 CRAM for feature extraction

Using the thresholds identified in Sect. 4.3.1, we perform
experiments to study the impact of using CRAM for fea-
ture extraction. The results are shown in Table 5.

From the results, we can find that after the introduction
of the CRAM, the F-score for AT and SED achieves a sig-
nificant improvement. Specifically, on the VWLSD, the
F-score of AT is increased from 58.6 to 59.4% and that of
SED from 46.3 to 46.7%. This result suggests that using
CRAM can further validate its advantages in feature extrac-
tion, thus improving the SED performance of the model.

Table 6 Performance results of audio tagging subtask

(2025) 2025:22

Page 9 of 14

4.3.3 Comparison with other methods
The proposed method is compared with GCCaps [22],
GCRNN [47], GCNN [22], and CRNN [48]. GCCaps
is the baseline system on which the proposed method
is built. GCRNN uses gated convolutional and recur-
rent layers [49] instead of capsule layers. It achieved first
place in the audio labeling subtask of Task 4. GCNN [22]
model is similar to GCRNN but not including the recur-
rent layers. The results for AT and SED are shown in
Tables 6 and 7, respectively. On the VWLSD, our method
outperformed the comparable models on both AT and
SED tasks, achieving the F-scores for AT and SED at
62.1% and 54.1%, respectively. By using CRAM for fea-
ture extraction, deeper channel features are successfully
extracted, which significantly improves the performance
of audio detection. In the SED task, the recurrent layer
significantly improves the localization of ResCapsnet-
BiGRU and GCRNN because its scores are much higher
than that of GCNN, and Recall is also much better. Com-
pared to GCRNN, our ResCapsnet-BiGRU achieves
a 10.8% improvement in F-score. This indicates that
the combination of the capsule layer and BiGRU in our
method enhances the recurrent layer in the GCRNN, and
improves the experimental performance of the PSED. In
addition, compared to the Capsule-transformer [50] pro-
posed in 2024, our strategy improves by 1.5% and 6.2% on
AT and SED tasks, respectively.

On the DESD, ResCapsnet-BiGRU achieves better per-
formance, with 77.3% and 75.9% F in AT and SED tasks,
respectively. Mainly due to the obvious heterogeneity

Method DataSet F-score Precision Recall
GCNN VWLSD 57.2% 59.0% 57.2%
GCRNN VWLSD 57.3% 53.6% 59.6%
GCCaps VWLSD 58.6% 59.2% 57.9%
Capsule-transformer VWLSD 60.6% 62.9% 57.6%
ResCapsnet-BiGRU VWLSD 62.1% (61.7%—62.5%) 57.4% (57.0%—57.8%) 67.7% (67.3%—68.1%)
ResCapsnet-BiGRU DESD 77.3% (76.4%—78.2%) 77.5% (76.6%—78.4%) 77.2% (76.1%—78.3%)

Table 7 Performance results of sound event detection subtask

Method DataSet F-score Precision Recall
GCNN VWLSD 37.5% 46.6% 31.1%
GCRNN VWLSD 43.3% 57.9% 34.8%
GCCaps VWLSD 46.3% 58.3% 384%
Capsule-transformer VWLSD 47.9% 68.7% 29.1%
ResCapsnet-BiGRU VWLSD 54.1% (53.7-54.5%) 48.4% (48.0—48.8%) 61.3% (59.8—61.8%)
ResCapsnet-BiGRU DESD 75.9% (75.4—76.4%) 75.0% (74.6—75.4%) 76.8% (76.4—77.3%)
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Fig. 6 Performance as a function of the number of epochs for (a) accuracy and (b) loss. The proposed ResCapsnet-BiGRU model has the highest
accuracy and the lowest loss

Table 8 F-score of audio tagging subtask for each event

Train horn

81.5%
Police car
65.3%

Air horn, truck horn Car alarm
64.7% 65.5%
Screaming Car
88.5% 66.3%

Reversing beeps Bicycle Skateboard

67.9% 49.4% 72.7% 58.6%
Car passing by Bus Truck

38.2% 43.1% 48.9% 60.3%

Ambulance

Motorcycle

Fire engine,
fire truck

67.3%
Train
79.2%

Civil defense siren

87.9%
Micro average
62.1%
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Table 9 Error rate of sound event detection subtask for each event

(2025) 2025:22
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Train horn Air horn, truck horn Car alarm Reversing beeps
0.67 0.85 0.72 0.80

Police car Screaming Car Car passing by
0.85 0.7 0.84 14

Bicycle Skateboard Ambulance Fire engine,  Civil defense siren
fire truck

1.7 0.88 0.94 0.86 0.33

Bus Truck Motorcycle Train Micro average

1.46 1.32 0.88 0.73 0.79

between the 10 sound event classes in DESD (e.g., sig-
nificant differences in temporal dynamics and spectral
patterns between speech and dishes) that contribute to
discriminative feature learning. This inherent diversity
enables models to develop more robust class-specific
representations, ultimately leading to improved classifi-
cation performance.

To obtain greater insight, we also compared the perfor-
mance of these models on the validation set as a function
of the number of epochs. As evident in Fig. 6, our pro-
posal achieved the highest accuracy and lowest loss. In
Fig. 6a, it can be seen that the accuracy decreases after
a number of epochs. These issues are not observed with
the training set, which suggests that the models are over-
fitting. However, as shown in the figures, the extent of
this problem is greatly reduced when the network models
GCCaps and ResCapsnet-BiGRU for capsule routing are
used. It can be seen in Fig. 6b that all of the models even-
tually diverge in terms of the value of the loss function.

Tables 8 and 9 show the model results for all sound
events on the two subtasks on the VWLSD. In the AT
subtask, “Civil defense siren, Train horn” and “Scream-
ing” events were classified with higher accuracy, and
“Car passing” and “Bus” events were classified with
lower accuracy. In the SED subtask, events such as “Civil
defense siren” had low error rates, while events such as
“Bicycle’;, “Car Passing by’, and “Bus” had higher error
rates.

These results show that the use of improved capsule
dynamic routing leads to improved accuracy in the AT
subtask and reduced error rates in the SED subtask. Spe-
cifically, the introduction of the CRAM can fully utilize

B 32 units

B 64 units B 128 units

62.1%
61.4%

14.4% 14.4%

13.9%

~0.12

F1 (@) ER

the raw feature information, allowing the model to learn
more audio features. The routing algorithm of the capsule
network enables the model to identify the whole-local
relationship, which enhances the generalization ability of
the model. The introduction of BiGRU model enables the
model to learn contextual information, which enhances
the temporal localization ability of the model. Therefore,
the model achieves satisfactory performance on both the
AT subtask and the SED subtask.

4.3.4 Ablation experiments

Change the number of hidden units in the BiGRU
model. Figure 7 shows the experiments under varying the
number of hidden units in the BiGRU Model, and we can
see that both AT and SED achieve a significant improve-
ment in F-score compared to the baseline system. In par-
ticular, the best model performance is achieved when the
number of hidden units is set to 64. The F-score of AT
improves to 62.1%, which is a 3.5% increase compared to
the baseline, and the F-score of SED improves to 54.1%,
which is a 7.8% increase compared to the baseline. These
results show that for our model, with the number of hid-
den units of the BiIGRU Model set to 64, the model is bet-
ter able to bi-directionally process the time sequence data
and learn the rich temporal information, which results in
a significant enhancement in the localization and detec-
tion of sound events.

Changing the model learning rate. Figure 8 shows
the experiment under varying model learning rate, in
which case our model decreased the F-score results
with the increase in learning rate and increased the ER

32 units 64 units B 128 units
9 0.90
0.54 1 =%
53.0% 52.7%
0.52
0.85
0.504
0.48 81.0%
481 80.0%
o 79.0% 0.80 5
0.46 1
0.444 L0.75
0.424
0.40 0.70
F1 (b) ER

Fig. 7 aand b represent the AT results and SED results of the model with different numbers of hidden units in BiGRU, respectively
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Fig. 8 a and b represent the AT results and SED results, respectively, for changing the model learning rate

results instead. The F-score of AT is decreased from
62.1 to 58.9% and the F-score of SED is decreased from
54.1 to 50.9% when the Learning rate is increased from
0.001 to 0.003. This result shows that when the learning
rate is too large, it can lead to unstable model training
and the model parameters are updated too much during
the training process, which leads to the possibility of the
model ignoring more audio time information during the
learning process. Based on the experiments, the learning
rate of 0.001 was determined to be suitable for our model,
which not only effectively accelerates the training of the
model, but also improves the accuracy of the model.

5 Conclusion

In this study, a hybrid model of CRAM and BiGRU on
the basis of capsule architecture has been presented for
the problem of polyphonic sound event detection. This
model utilizes the powerful feature extraction capability
of CRAM to extract richer and more relevant audio fea-
tures for SED. The dynamic routing algorithm is applied
to the CapsNet layer to effectively identify overlapping
sound events. Meanwhile, the BiGRU Model is used for
sequence modeling to acquire contextual information
from audio vector sequences by combining BiGRU with a
time-distributed fully connected layer. We evaluated the
model on the VWLSD and the DESD. Compared to the
baseline system, our ResCapsnet-BiGRU model is shown
to exhibit superior performance and robustness.

In the future, we will continue to explore more effi-
cient feature extraction techniques and investigate how
to improve dynamic routing capsule networks to better
handle dynamic and complex patterns, thereby further
improving the accuracy of SED.
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SED Sound event detection
AT Audio tagging
CNN Convolutional neural networks

CRNN Convolutional recurrent neural networks
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NMF Nonnegative matrix factorization
GMM Gaussian mixture model

SVM Support vector machine
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